返回首页> 大数据 > 没有数据驱动文化,大数据项目将失败
跳过导航链接

没有数据驱动文化,大数据项目将失败
2016-11-1 15:05:00

文章摘要: 没有数据驱动文化,大数据项目将失败,寻求大数据项目的成功?记住:文化为王。Tara Paider,是位于俄亥俄州哥伦布市,Nationwide Insurance公司的IT架构的副总裁,对于数据专家渴望获得大数据项目的成功,给出了一些建议:大数据项目失败的最大原因之一,既不是技术,也不是数据的数量。而是人。 例证:Nationwi...
 

没有数据驱动文化,大数据项目将失败,寻求大数据项目的成功?记住:文化为王。Tara Paider,是位于俄亥俄州哥伦布市,Nationwide Insurance公司的IT架构的副总裁,对于数据专家渴望获得大数据项目的成功,给出了一些建议:大数据项目失败的最大原因之一,既不是技术,也不是数据的数量。而是人。

例证:Nationwide的保险代理人的日常工作的一部分,是确保保费上升时,客户不转换到其他保险公司。有一个列表,列出保费将在未来30天内上升的客户,代理拿起电话,与他们最好的客户解释这些变化。一项新客户数据分析项目发现,这样做有时会有负面作用:这些电话并不能帮助代理保住那些保费变化的客户,实际上会造成客户流失,Paider说。

“对于代理,很难理解数据发现的结果,因为和他们过去20年所做的不同,”她对在拉斯维加斯参加Gartner Business Intelligence and Analytics的与会者说。

所以,Paider和她的团队开始制作更精细的保费通知列表,让代理只给会带来积极响应的客户打电话和接触,她说。这个故事和CIO这个职位本身一样古老。ERP整合项目经常失败,并不是因为技术,而是因为人。

大数据,也没有什么不同。但是大数据正在颠覆业务流程工作流;它对所有都有影响,从企业基础设施,到企业架构。为了确保员工为数据感到兴奋,而不是感到威胁,专家常常告诫公司,他们需要创建一个数据驱动的文化。

但这说起来容易,做起来难。 Paider指出,一个强大的企业文化——要从高层开始,但不止于此;它还需要一线员工的参与,但是会带来额外的障碍。 “这是最难的部分,而我们在过去20年或30年都是这样做的,我们很清楚。这是我们最大的挑战,”她说。

打造数据驱动的文化

Paider的观点并不罕见。 PricewaterhouseCoopers的研究指出文化,错误的文化是阻碍企业利用数据,并在信息时代取得成功的三大障碍之一。这一研究,与Iron Mountain合作完成,发现四分之三的企业中没有从他们的数据中获益。

公司如何打造数据驱动的文化环境?Gartner给出的定义是:“企业使用数据来组织活动,做出决策和解决冲突”。在Nationwide,是任命一名首席数据官(CDO)Paider向其汇报。 “任命CDO,是好消息,我们希望利用数据来作出决定,”她说。“我不认为这是改变文化的唯一方法,但你需要一些能够在业务和IT数据上有发言权的人,从而做出正确的决定。”

Nationwide的另一项文化修正,是向业务开放数据。新的,非结构化的数据源,比如地理位置,语音,社交媒体数据,可以更深入的了解客户的行为,获取更多的机会,更好的去服务客户。为了帮助业务获得这些洞察力,IT部门需要在大数据技术上进行投入,并承诺让业务部门访问这些数据。“传统上,我们认为数据项目是线性的,类似应用开发项目,”Paider说。“但是,数据项目很复杂,你根本不知道会从数据中发现什么…直到你开始接触这些数据。”

在另一家数据驱动的企业内,开放公司数据对于打造大数据文化也是关键。Jeremy King,是位于加州圣布鲁诺的@WalmartLabs CTO和主管,说他的团队将数据集中到一个Hadoop系统,让他们的内部客户访问其所需的数据,来进行实验。在提供访问权限前,King的团队构建进程,以清洗和标记数据以保护个人认证信息。

但是,公司还需要消除官僚壁垒,让访问数据变得容易,有些企业则选择逃避。“我和很多企业进行过交谈,已经建立了Hadoop 或大数据架构,但是他们却不让任何人访问这些系统,”他在去年秋天的Strata + Hadoop World上说到。 这种繁文缛节限制了创造性思维和实验,King说。在Walmart,甚至提供部分数据的权限,也是被限制的。

“如果你只使用部分的数据,你将很难做出决定,在Walmart这样规模的公司内,是否起作用。所以我们希望每个人从一开始都能够访问数据,来测试他们的理论,”他说。 授予整个匿名数据集的访问权限起到了效果。至少在一个案例中,这样做促使了一个类似初创的时刻,在几个小时内,两个工程师设计并开发了广告优化平台的原型,将在线广告和线下销售相连接。这一原型最终成为Walmart Exchange。 “我认为,除非你有让所有人访问数据的系统,这些神奇的时刻是不会发生的,” King说。

如何构建数据驱动的文化

开始建立一个数据驱动的文化,CIO们必须找到令人信服的业务用例。Micheline Casey,美联储的前任首席数据官,现在为大数据分析公司Clear Story Data担任顾问,曾经经历过对于大数据项目的阻力,不是因为缺乏兴趣或支持,但因为更务实的理由:钱。“美联储是一个政府机构,它虽然不从国会拿钱,但它有预算,”她说。预算很小,造成资金的争夺。

“特别是刚接触大数据的公司,要识别和优先选择正确的项目和用例,展现价值,在企业内建立信誉,”她说。“在很多企业中,这种信誉帮助你获得资金。” 这就是为什么专家们,包括Mann,建议通过解决一个小问题,将大数据引入企业。“你想要找到一个可以成为范例的案例,” Mann说。

“你有一个非常具体的问题,你对于这个问题,有个非常实用的解决方案。” 随着企业看到问题快速解决,对于这种方法的信任会增长——随着文化变得越来越数据驱动,IT的战略也会随之改变。在Bloomberg,例如,对于大数据价值的讨论已经结束了。现在的挑战是确定在机器学习和大数据平台上需要构建什么。 “你必须确保你密切与产品相关,你构建的是通用系统,而不是针对小问题的特定方案,因为这个小问题可能会发生变化,” Mann说。

 

更多推荐:大数据云计算  Cloudera认证培训  Hadoop基础培训  Apache Hadoop CCAH培训

上一篇:大数据领域的顶级开源大数据软件产品大集合
下一篇:6个用于大数据处理分析的工具
文章摘要: 6个用于大数据处理分析的工具,大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。   在大数据和大数据分析,他们对企业的影响有一个兴趣...
◆用大数据预测雾霾,已获得环保部订单的微软是如何做到的? ◆大数据学习经验 ◆身处大数据时代,大数据这些误区你知道吗 ◆大数据分析促进人才招聘 ◆架构师和开发者争吵的理由 ◆微软推出WDATP强化企业终端威胁防护 ◆Windows申请免费SSL证书-Let's Encrypt ◆Windows Server 2008 R2设置VMware在开机登录之前自启动 ◆回望微软亚洲研究院:5位门徒的故事 ◆Win10进入安全模式的两种方法 ◆怎样选择合适的PoE交换机? ◆思科持续保持企业基础设施市场优势 ◆网络工程师需要的8项技能 ◆思科IOS中改善CLI的用户体验 ◆思科7600系列设备VTT故障排查流程 ◆新华三集团总裁兼首席执行官于英涛2017年会致辞 ◆新华三加速云落地 ◆H3C交换机S5500策略路由配置 ◆华三H3C交换机命名规则详解 ◆H3C交换机设置DHCP中继,配合Linux 服务器为多VLAN提供DHCP地址分配服务 ◆女生做Linux运维工程师 ◆Linux培训:Linux中的info指令 ◆Linux为何喜欢把系统信息放在文件中 ◆Linux技术怎么学? ◆Linux下安装Oracle 11g RAC详细教程:安装前环境准备 ◆是否有必要参加PMP考试培训 ◆该怎么选择PMP培训公司 ◆企业为什么需要IT配置管理及其如何使用 ◆PMP考试心得 ◆IT资产管理与ITIL配置管理的区别和联系 ◆Juniper SSG双机高可用(HA)平滑升级经验分享 ◆高盛:Juniper市场表现将超过Cisco和Arista ◆Juniper收购云管理公司AppFormix ◆Juniper Networks:软件定义云计算 SDN控制器 ◆Juniper SSG系列DDNS设置 ◆除F5外,其他负载均衡软件的优缺点 ◆负载均衡的那些算法们 ◆F5配置手册:设备初始化配置 ◆关于Link Controller的说明(简称LC) ◆F5:物联网安全任重道远 ◆甲骨文这次公布了其云计算家底 ◆Oracle培训:案例管理如何强化SOA环境 ◆Ubuntu 14.04 安装 Oracle 11g R2 Express Edition ◆Oracle如何查询当前连接的用户名 ◆Oracle 密码文件与用户密码的关系 ◆拥抱商业虚拟化生态,XSKY获VMware Ready Storage认证 ◆VMware公布IT管理和安全云计算调查的主要研究结果 ◆VMware跨云策略助力企业数字化转型 ◆VMware RHEL6.5 虚拟机克隆后更改网卡 ◆VMware Photos OS OVA SSH访问权限漏洞(CVE-2016-5333) ◆戴尔EMC补丁在VMAX存储系统中出现漏洞 ◆EMC进行SAN拆分,解决更细化的存储需求 ◆EMC数据中心全闪存年,机架级闪存可让Hadoop提速10倍 ◆EMC发布2016年新品和技术路线 ◆重新定义企业IT,EMC联手VMware推超融合 ◆用大数据预测雾霾,已获得环保部订单的微软是如何做到的? ◆大数据学习经验 ◆身处大数据时代,大数据这些误区你知道吗 ◆大数据分析促进人才招聘 ◆架构师和开发者争吵的理由 ◆云计算的三大支柱 ◆云计算的真正价值不仅仅是节省开支 ◆云计算将改变我们的生活? ◆云计算如何助力城市管理 ◆微软、AWS、VMware如何在中国云计算市场淘金 ◆Spark将机器学习与GPU加速机制纳入自身 ◆spark作业调优 ◆Spark基本工作流程及YARN cluster模式原理 ◆从Spark 2.0版的推出,看开源大数据技术的商业化发展 ◆Spark2.0安装配置文档 ◆思科公司关闭基于OpenStack的公共云 ◆2017年OpenStack管理员认证会不会火? ◆OpenStack私有云成本可能低于AWS的3个原因 ◆OpenStack跨云协作 ◆OpenStack第十四个版本及14项重要事实 ◆IBM首席执行官提出人工智能部署三大基本原则 ◆调研IBM与西门子:软件将是工业的未来! ◆IBM在美获专利最多 ◆IBM闪存迎接新挑战 ◆AIX平台部署数据库与打补丁常见错误 ◆Hadoop创始人Doug Cutting寄语2017:五种让开源项目成功的方法 ◆基于Ubuntu Hadoop的群集搭建Hive ◆HDFS以及HBase动态增加和删除节点 ◆Cloudera提供课程帮助缩小数据技能差距 ◆Cloudera提供课程帮助缩小数据技能差距 ◆MapReduce工作流多种实现方式 ◆Citrix虚拟化技术:XenServer6.2资源池配置 ◆Citrix虚拟化技术:XenServer6.2虚拟机创建 ◆Citrix虚拟化技术:XenServer6.2存储管理 ◆Citrix虚拟化技术:XenServer6.2安装 ◆2017年十大最热IT技能:安全位列其中 ◆筑牢个人信息安全防火墙 ◆2016年最热门的六大IT职位 ◆CISP认证和CISSP认证区别 ◆成为CISSP的理由